NVIDIA讓機器手臂更容易抓取空間中任一位置的物體,而且不會夾壞
在現行針對機器手臂抓取真實場景中的物體過程中,通常會在機器手臂裝置攝影鏡頭,透過影像識別方式判斷物件所在,藉此調整機器手臂運作位置,但是最大難度則在於如何控制機器手臂抓取物體力道,而NVIDIA提出的6-DoF GraspNet運算框架,讓機器手臂能以更快效率學會如何抓取空間中任一位置的物體。 依照6-DoF GraspNet運算框架運作模式,將可讓機器手臂透過影像識別方式判......
在現行針對機器手臂抓取真實場景中的物體過程中,通常會在機器手臂裝置攝影鏡頭,透過影像識別方式判斷物件所在,藉此調整機器手臂運作位置,但是最大難度則在於如何控制機器手臂抓取物體力道,而NVIDIA提出的6-DoF GraspNet運算框架,讓機器手臂能以更快效率學會如何抓取空間中任一位置的物體。 依照6-DoF GraspNet運算框架運作模式,將可讓機器手臂透過影像識別方式判......